Please use this identifier to cite or link to this item: https://erepository.fmesinstitute.org/handle/123456789/1732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHaire, B.-
dc.date.accessioned2019-11-29T18:16:38Z-
dc.date.available2019-11-29T18:16:38Z-
dc.date.issued2009-
dc.identifier.citationHaire, B. (2009). Back to basics in clinical research ethics. American Journal of Bioethics, 9(3), 48–49.en_US
dc.identifier.urihttps://doi.org/10.1080/15265160802654194-
dc.identifier.urihttps://erepository.fmesinstitute.org/handle/123456789/1732-
dc.description.abstractUnderstanding the relationship between species richness and productivity is fundamental to the management and preservation of biodiversity. Yet despite years of study and intense theoretical interest, this relationship remains controversial. Here, we present the results of a literature survey in which we examined the relationship between species richness and productivity in 171 published studies. We extracted the raw data from published tables and graphs and subjected these data to a standardized analysis, using ordinary least-squares (OLS) regression and generalized linear-model (GLIM) regression to test for significant positive, negative, or curvilinear relationships between productivity and species diversity. If the rela- tionship was curvilinear, we tested whether the maximum (or minimum) of the curve occurred within the range of productivity values observed (i.e., was there evidence of a hump?). A meta-analysis conducted on the distribution of standardized quadratic regression co- efficients showed that the average quadratic coefficient was negative (i.e., the average species richnessproductivity relationship was curvilinear and decelerating), and that the distribution of standardized quadratic regression coefficients was significantly heterogeneous (i.e., the studies did not sample the same underlying species richnessproductivity relationship). Looking more closely at the patterns of productivitydiversity relationships, we found that, for vascular plants at geographical scales smaller than continents, hump-shaped re- lationships occurred most frequently (4145% of all studies). A positive relationship be- tween productivity and species richness was the next most common pattern, and positive and hump-shaped relationships co-dominated at the continental scale. For animals, positive, negative, and hump-shaped patterns were common at most geographical scales, and no one pattern predominated. For both plants and animals, hump-shaped curves were relatively more common in studies that crossed community boundaries compared to studies conducted within a community type, and plant studies that crossed community types tended to span a greater range of productivity compared to studies within community types. Sample size and plot size did not affect the probability of finding a particular productivitydiversity relationship (e.g., positive, hump-shaped, etc.). However, hump-shaped curves were es- pecially common (65%) in studies of plant diversity that used plant biomass as a measure of productivity, and in studies conducted in aquatic systems.en_US
dc.language.isoenen_US
dc.publisherAmerican Journal of Bioethicsen_US
dc.titleBack to basics in clinical research ethics.en_US
dc.typeJournal Articleen_US
fmes.numPages48–49en_US
Appears in Collections:Ethics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.